PROBLEM 1.1

Heat is removed from a rectangular surface by L
convection to an ambient fluid at T_ . The heat transfer
coefficient is h. Surface temperature is given by

_ A 0F—>X

<« = —>

where A is constant. Determine the steady state heat
transfer rate from the plate.

(1) Observations. (i) Heat is removed from the surface
by convection. Therefore, Newton's law of cooling is /! dqs
applicable. (ii) Ambient temperature and heat transfer
coefficient are uniform. (iii) Surface temperature varies
along the rectangle. dx

(2) Problem Definition. Find the total heat transfer rate by convection from the surface of a
plate with a variable surface area and heat transfer coefficient.

(3) Solution Plan. Newton's law of cooling gives the rate of heat transfer by convection.
However, in this problem surface temperature is not uniform. This means that the rate of heat
transfer varies along the surface. Thus, Newton’s law should be applied to an infinitesimal area
dAs and integrated over the entire surface to obtain the total heat transfer.

(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) negligible radiation, (3) uniform heat transfer
coefficient and (4) uniform ambient fluid temperature.

(if) Analysis. Newton's law of cooling states that

qS: h AS (TS = Tgo) (a.)
where

A = surface area, m?
h = heat transfer coefficient, W/m?2-°C
g, = rate of surface heat transfer by convection, W

Ts = surface temperature, °C
T..= ambient temperature, °C
Applying (a) to an infinitesimal area dAs
dg, =h(Ts - Ts) dAs (b)

The next step is to express T (x) in terms of distance x along the triangle. T, (x) is specified as

A
Ts=—7 (©
RVETE



PROBLEM 1.1 (continued)

The infinitesimal area dAs is given by

dAs = W dx

where

X = axial distance, m

W = width, m
Substituting (c) and into (b)

A
dg, =h(— - Ts) Wdx
W12

Integration of (f) gives q

L
q,= qus = hw £(Ax‘1/2 ~T,)dx

Evaluating the integral in (f)

qs = hW[2ALY2 1T, |
Rewrite the above

gs = WLRAL Y2 -7, |

Note that at x = L surface temperature T (L) is given by (c) as

Te(L) = AL M2

(h) into (g)
Qs = hwL [2Ts (L) _Too]

(d)

(€)

(f)

(@)

(h)
(i)

(iii) Checking. Dimensional check: According to (c) units of C are® C/mY2 . Therefore units

gsin (g) are W.

Limiting checks: If h =0 then g,=0. Similarly, if W=0orL =0 then q,=0. Equation (i)

satisfies these limiting cases.

(5) Comments. Integration is necessary because surface temperature is variable.. The same
procedure can be followed if the ambient temperature or heat transfer coefficient is non-uniform.






PROBLEM 1.2

A right angle triangle is at a uniform surface temperature T;. Heat is removed by convection to
an ambient fluid at T.. The heat transfer coefficient h varies along the surface according to

<

X1/2

h=

where C is constant and x is distance along the base measured from the apex. Determine the
total heat transfer rate from the triangle.

(1) Observations. (i) Heat is removed from the surface by convection. Therefore, Newton's
law of cooling may be helpful. (ii) Ambient temperature and surface temperature are uniform.
(iii) Surface area and heat transfer coefficient vary along the triangle.

(2) Problem Definition. Find the total heat transfer rate by convection from the surface of a
plate with a variable surface area and heat transfer coefficient.

(3) Solution Plan. Newton's law of cooling gives the rate of /
W

heat transfer by convection. However, in this problem surface ( dqS
area and heat transfer coefficient are not uniform. This means %
that the rate of heat transfer varies along the surface. Thus, o

Newton’s law should be applied to an infinitesimal area dAs X J

and integrated over the entire surface to obtain the total heat

transfer.

< dx

< — L ——

(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) negligible radiation and (3) uniform ambient fluid
temperature.

(if) Analysis. Newton's law of cooling states that
qS: h As (Ts = Too) (a.)
where

A, = surface area, m?
h = heat transfer coefficient, W/m?-°C
g, = rate of surface heat transfer by convection, W

Ts = surface temperature, °C
T.. = ambient temperature, °C

Applying (a) to an infinitesimal area dAs
qu = h (TS = TOO) dAs (b)

The next step is to express h and dAs in terms of distance x along the triangle. The heat transfer
coefficient h is given by

C
h= v (c)

The infinitesimal area dAs is given by



PROBLEM 1.2 (continued)

=y(x) dx (d)
where
x = distance along base of triangle, m
y(x) = height of the element dA;, m
Similarity of triangles give
W
y() = T ©)
where
L = base of triangle, m
W = height of triangle, m
Substituting (c), (d) and (e) into (b)
C w
dg, = —5(Ts - Tw) —xdx )]
X L
Integration of (f) gives gs. Keeping in mind that C, L, W, T and T, are constants, (f) gives
X
a.= [do, = SR - [ ox ©
0 X
Evaluating the integral in (g)
2
9= 5CW LY (Ts- T.) (h)

(i) Checking. Dimensional check: According to (c) units of C are W/m*¥?-°C. Therefore
units of g, in (h) are

= C(W/m*%-°C) W(m) L"*(m"?) (T - T.,)(°C) = W

Limiting checks: If h =0 (that is C = 0) then gq,= 0. Similarly, if W=0orL=00rTs =T
then g,=0. Equation (h) satisfies these limiting cases.

(5) Comments. Integration was necessary because both area and heat transfer coefficient vary
with distance along the triangle. The same procedure can be followed if the ambient temperature
or surface temperature is non-uniform.






PROBLEM 1.3

A high intensity light bulb with surface heat flux (q/ A)is cooled by a fluid at T, . Sketch the

fluid temperature profiles for three values of the heat transfer coefficients: hy, h,, and hs, where
h]_ < h2 < h3.

(1) Observations. (i) Heat flux leaving the surface is specified (fixed). (ii) Heat loss from the
surface is by convection and radiation. (iii) Convection is described by Newton's law of cooling.
(iv). Changing the heat transfer coefficient affects temperature distribution. (v). Surface
temperature decreases as the heat transfer coefficient is increased. (vi) Surface temperature
gradient is described by Fourier’s law.(vii) Ambient temperature is constant.

(2) Problem Definition. Determine effect of heat transfer coefficient on surface temperature and
surface gradient..

(3) Solution Plan. (i) Apply Newton's law of cooling to examine surface temperature. (ii) Apply
Fourier’s law to determine temperature gradient at the surface.

(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) no radiation ,(3) uniform ambient fluid temperature
and (4) constant properties.

(if) Analysis. Newton’s law of cooling
(q/A)s = h(TS _Too) (a)
Solve for T
(b)

This result shows that for constant (q/A), surface temperature decreases as h is increased.
Apply Fourier’s law

YA
oT
(a/ A =—k(—j ©
)y
where y is the distance normal to the A\
surface. Rewrite (C) \
Too X 2 (q/A)S
¥ | !
y=0 >—
. _ T
This shows that temperature gradient at T

the surface remains constant independent
of h. Based on (b) and (d) the temperature

profiles corresponding to three values of
h are shown in the sketch.

(iii) Checking. Dimensional check: (1) Each term in (b) has units of temperature

_OC
h(W/IlI — C)

T(°C) =T, (°C) +



PROBLEM 1.3 (continued)

(2) Each term in (d) has units of °C/m

0 2
(ﬂj (OC/m):_(q/A)W( C/m ):OC/m
)y k(W/m-°C)

Limiting check: (i) for h = 0 (no heat leaves the surface), surface temperature is infinite. Seth =0
in (b) gives T = oo.

(5) Comments. Temperature gradient at the surface is the same for all values of h as long as the
thermal conductivity of the fluid is constant and radiation is neglected.



PROBLEM 1.4

Explain why fanning gives a cool sensation. y

(1) Observations. (i) Metabolic heat leaves
body at the skin by convection and radiation.
(ii) Convection is described by Newton's law
of cooling. (iii). Fanning increases the heat
transfer coefficient and affects temperature

distribution, including surface temperature.
(iv). Surface temperature decreases as the
heat transfer coefficient is increased. (V)
Surface temperature is described by Newton’s
law of cooling. (vi) Ambient temperature is
constant.

(2) Problem Definition. Determine effect of heat transfer coefficient on surface temperature.

(3) Solution Plan. Apply Newton's law of cooling to examine surface temperature.

(4) Plan Execution.

(1) Assumptions. (1) Steady state, (2) no radiation ,(3) uniform ambient fluid temperature,

(4) constant surface heat flux and (5) constant properties.

(if) Analysis. Newton’s law of cooling

ds =h(Ts =T,)
where
h = heat transfer coefficient, W/m?-°C

q7 = surface heat flux, W/m?
T, = surface temperature, °C
T, =ambient temperature, °C

Solve (a) for Ty

T =T, +3
h

(@)

(b)

This result shows that for constant qg, surface temperature decreases as h is increased. Since
fanning increases h it follows that it lowers surface temperature and gives a cooling sensation.

(iii) Checking. Dimensional check: Each term in (b) has units of temperature

gzwim?) .

T.(°C)=T_(°C)+ —=—~———~ =
O O b s



PROBLEM 1.4 (continued)
Limiting check: for h = 0 (no heat leaves the surface), surface temperature is infinite. Seth =0 in
(b) gives Ty = 0.

(5) Comments. (i) The analysis is based on the assumption that surface heat flux remains
constant. (ii) Although surface temperature decreases with fanning, temperature gradient at the
surface remains constant. This follows from the application of Fourier’s law at the surface

oT
=k L
| [ayl

(a—Tj =95 _ constant

Solving for (8T /dy),



PROBLEM 1.5

A block of ice is submerged in water at the melting temperature. Explain why stirring the water
accelerates the melting rate.

\ Y
(1) Observations. (i) Melting rate of ice depends on -
the rate of heat added at the surface. (ii) Heat is added
to the ice from the water by convection. (iii) Newton's
law of cooling is applicable. (iv). Stirring increases
surface temperature gradient and the heat transfer
coefficient. An increase in gradient or h increases the
rate of heat transfer. (v) Surface temperature remains
constant equal to the melting temperature of ice. (vi)
water temperature is constant. ice

.............. no stirring
stirring

(2) Problem Definition. Determine effect of stirring
on surface heat flux.

(3) Solution Plan. Apply Newton's law of cooling to examine surface heat flux.

(4) Plan Execution.

(i) Assumptions. (1) no radiation ,(2) uniform water temperature, (3) constant melting
(surface) temperature.

(ii) Analysis. Newton’s law of cooling
A =h(Ts ~T..) (@)

where

h = heat transfer coefficient, W/m?-°C

q7 = surface heat flux, W/m?

T, = surface temperature, °C

T, =ambient water temperature, °C
Stirring increases h . Thus, according to (a) surface heat flux increases with stirring. This will
accelerate melting.

(iii) Checking. Dimensional check: Each term in (a) has units of heat flux.
Limiting check: For T, =T (water and ice are at the same temperature), no heat will be added to
the ice. Set T, =T in (a) gives g¢ = 0.

(5) Comments. An increase in h is a consequence of an increase in surface temperature gradient.
Application of Fourier’s law at the surface gives

aT
A b
o (@js ®)



PROBLEM 1.5 (continued)

)
T X

Combining (a) and (b)

According to (c), for constant T and T, increasing surface temperature gradient increases h.



PROBLEM 1.6
Consider steady state, incompressible, axisymmetric parallel flow in a tube of radius r,. The
axial velocity distribution for this flow is given by

r2
u= U (1——2)
r-O
where U is the mean or average axial velocity. Determine the three components of the total
acceleration for this flow.

(1) Observations. (i) This problem is described by cylindrical coordinates. (ii) For parallel
streamlines v, =v, =0. (iii) Axial velocity is independent of axial and angular distance.

(2) Problem Definition. Determine the total acceleration in the r, & and z directions.
(3) Solution Plan. Apply total derivative in cylindrical coordinates.

(4) Plan Execution.

(if) Assumptions. (1) Constant radius tube, (2) constant density and (3) streamlines are
parallel to surface.

(if) Analysis. Total acceleration in cylindrical coordinates is given by

dv, _Dv, _ v, Vg vy v3 TT

_ _ __0 + 1.23a
d¢ Dt "o r o0 r o at (1.232)
dv, _ Dv, _v, oV +v_98v9 L VYo v, Ny N Vg (1.23b)
dt Dt or r o6 r 0z ot
v, _Dv, =V, o, +V—‘95~VZ +V, v, +avz (1.23c)
dt Dt o r 06 oz ot
For streamlines parallel to surface
V, =V, =0 (@)
The axial velocity u =v, is given by
2
v, =u=0 (- (b)
r0
From (b) it follows that
(3\/_2 = %O (C)
oz ot
Substituting into (1.23a), (1.23b) and (1.23c)
Radial acceleration: v, _bve 0
dt Dt
dv, _Dv,

Angular acceleration;
dt Dt



PROBLEM 1.6 (continued)

. . \Y Dv
Axial acceleration: av, =—2*%t=0
dt Dt

(5) Comments. All three acceleration components vanish for this flow.



PROBLEM 1.7

Consider transient flow in the neighborhood of a vortex line where the
velocity is in the tangential direction given by

2
V(r,t)= zl;c’r {1— exp(— Arr_‘mﬂ

Here r is the radial coordinate, t is time, /7, is circulation

(constant) v is kinematic viscosity. Determine the three components
of total acceleration.

(1) Observations. (i) This problem is described by cylindrical coordinates. (ii) streamlines are
concentric circles. Thus the velocity component in the radial direction vanishes (v, =0). (iii)

For one-dimensional flow there is no motion in the z-direction (v, =0). (iv) The &-velocity
component, v, , depends on distance r and time t.

(2) Problem Definition. Determine the total acceleration in the r, 6 and z directions.
(3) Solution Plan. Apply total derivative in cylindrical coordinates.

(4) Plan Execution.
(if) Assumptions. (1) streamlines are concentric circles (2) no motion in the z-direction.
(if) Analysis. Total acceleration in cylindrical coordinates is given by

The three components of the total acceleration in the cylindrical coordinates r,8,z are

2
dv, Dv, r6v,r+v_¢96vr _v_thrvzaveravr
dt Dt or r o6 r 0z ot

dv, _ Dv, _v, Ny +V_93Vg +VrV0 v, Ny +8V6 (1.23b)
dt Dt or r oo r 0z ot

v, _Dv, =V, o +v_98vz +V, v, +8vz (1.23c)
dt Dt o r 06 oz ot

For the flow under consideration the three velocity component, v,, v, and v, are

(1.233)

v, =0 (@)

2
Vy(r,t) = 217;Or lil— exp[— :—MJ] (b)
v, =0 (©

Radial acceleration: (a) and (c) into (1.23a)



PROBLEM 1.7 (continued)

Dv, vg
=——= d
Dt r (@)
(b) into (d)
Dv (I )2 r? i
L=~ 9% |l-exp ——— (e)
Dt 4723 4vt
Tangential acceleration: (a) and (c) into (1.23b)
Dvy _ Vg
Dt ot ®
(b) into (f)
Dv, [,(r?)1 r’
Dt 2rr [4MJI P 4t ©)
Axial acceleration: (a) and into (1.23c)
Dv,
=0 h
Dt ")

(iii) Checking. Dimensional check: Units of acceleration in (e) and (g) are m/s2.Note that
according to (b), units of /7, are m?/s and the exponent of the exponential is dimensionless.
Thus units of (e) are

2 (b 1a2 2\
DVr :_(Fo) (m /s ) 1—exp _r_ = m/52
Dt 47%r3(m?) ant

Units of (g) are

Dv, __Fo(mzls)[ r2(m?) j 1ot /2

= exp
Dt 2zr(m)  4v(m?/s)t(s) Jt(s) 4vt

Limiting check: (1) For 73 =0, all acceleration components vanish. Setting /7, =0 in (e) and

. Dv, Dvy
ives —=——==
@9 TRl
(2) According to (b) at t =0, the tangential velocity vanishes (v, = 0). Thus all acceleration

. . . . D
components should vanish. Setting t = in (e) and (g) gives DDVtr = # =

(5) Comments. The three velocity components must be known to determine the three
acceleration components.



PROBLEM 1.8

An infinitely large plate is suddenly moved parallel to its surface with a velocity U,. The
resulting transient velocity distribution of the surrounding fluid is given by

u:uo{l—(zw;)'[ eXp(—nz)dU} Y
0

where the variable 7 is defined as

Y
>

_ Y late ’ 0 U
X,t)=——— P 0
n(x,t) > ot

Here t is time, y is the vertical coordinate and v is kinematic viscosity. Note that streamlines
for this flow are parallel to the plate. Determine the three components of total acceleration.

(1) Observations. (i) This problem is described by Cartesian coordinates. (ii) For parallel
streamlines the y-velocity component v = 0. (iii) For one-dimensional flow there is no motion in
the z-direction (w = 0). The x-velocity component depends on distance y and time t.

(2) Problem Definition. Determine the total acceleration in the x, y and z directions.
(3) Solution Plan. Apply total derivative in Cartesian coordinates.

(4) Plan Execution.

(if) Assumptions. (1) streamlines are parallel to surface and (2) no motion in the z-
direction.
(if) Analysis. Total acceleration in Cartesian coordinates is given by
daf _of _ o ot o of (1.21)
dt Dt ox oy oz ot

where f represents any of the three velocity components u, v or w. The x-velocity component u is
given by

7
u=uo[1—(2/ﬁ> j eXp(—nz)dn} )
0
where
nxt) = —— (b)

2 /vt

Note that u depends on y and t only. For one-dimensional parallel flow

v=w=0 ()
Total acceleration in the x-direction, a, . Set f=uin (1.21)
du Du ou ou ou ou
a,=—=—=U—+

K =— = = V— +W—+— (d)
dt Dt OX oy oz ot



PROBLEM 1.8 (continued)
Since u depends on y and t only, it follows that

ou
= -0 e
= (e)
Substitute (c) and (e) into (d)
ou
a, =— f
=5 ()
This derivative is obtained using the chain rule
ou duon
a, =—= ———
ot dpét ©)
Using (a)
du 2U, 2
—=- exp(— h
TR p(=1") (h)
Using (b)
6_77= Y s2___ Y }z_i (i)
SN 4ottt 4t
Substitute (h) and (i) into (g)
=8_U= UO UeXp(_ﬂz) (g)

a
ot 2dx t

Total acceleration in the y-direction, a, . Set f=vin (1.21)

u—+vﬂ+w—+— (h)
Apply (c) to (h)

ay = (i)
Total acceleration in the z-direction, a,. Set f=w in (1.21)

dw Dw  ow o oW Ow .
ay=-—=--=U—+V— +W—+t — 1),
dt Dt OX oy oz ot
Apply (c) to (h)
a, =0 (k)
(i) Checking. Dimensional check: Units of acceleration in (g) are m?/s.Note that 7 is
dimensionless. Thus units of (g) are

2
L _Ua(mis) mexp(-n®) _ o

S N (O
Limiting check: (1) For U, =0, the acceleration a, = 0. Setting U, =0 in (g) gives a, =0.
(2) According to (b) at t =0, 7(y,) =0. Evaluation (a) at 7(y,») =0 gives



PROBLEM 1.8 (continued)
u(y,») =U, ()

Since u is constant every where it follows that the a, must be zero. Setting 7 =0and t=o0in
(9) gives a, =0.

(5) Comments. The three velocity components must be known to determine the three
acceleration components.



PROBLEM 1.9

Consider two parallel plates with the lower plate stationary and the upper plate moving with a
velocity U,. The lower plate is maintained at temperature T, and the upper plate at T,. The
axial velocity of the fluid for steady state and parallel streamlines is given by

y y
u=U,—=
o T u,
where H is the distance between the two plates.
Temperature distribution is given by
2 2 X
HU, y y T
T="y—"-|+(T,-T)=—+T 0 T
>kH [y H } (To—-Th) TR 1

where k is thermal conductivity and g is viscosity. Determine the total temperature derivative.

(1) Observations. (i) This problem is described by Cartesian coordinates. (ii) For parallel
streamlines the y-velocity component v = 0. (iii) For one-dimensional flow there is no motion in
the z-direction (w = 0). The x-velocity component depends on distance y only.

(2) Problem Definition. Determine the total temperature derivative.
(3) Solution Plan. Apply total derivative in Cartesian coordinates.

(4) Plan Execution.

(if) Assumptions. (1) streamlines are parallel to surface, (2) no motion in the z-direction
and (3) temperature distribution s one dimensional, T =T (y).

(if) Analysis. Total acceleration in Cartesian coordinates is given by
d_f=D_f:uﬂ+Vi+Wi+ﬂ (121)
dt Dt OX oy oz ot

where f represents temperature. Let f =T in (1.21)

dT DT oT aT  aT of

—=—=U—4+V—+W—F— (@)
dt Dt OX oy oz ot
where
u=u, % (b)
H
and
v=w=0 (c)
Temperature distribution is given by
2 2
ngtjl_c; [y—yF}(To _Tl)%-i'-rl (d)

Using (d)



