
PROBLEM 1.1 

Heat is removed from a rectangular surface by 

convection to an ambient fluid at T .  The heat transfer 

coefficient is h. Surface temperature is given by 

sT  = 
2/1x

A

where A is constant.  Determine the steady state heat 
transfer rate from the plate.

(1) Observations.   (i) Heat  is removed from the surface 
by convection.  Therefore,  Newton's  law of cooling is 
applicable.  (ii) Ambient temperature and heat transfer 
coefficient are uniform.  (iii) Surface temperature varies 
along the rectangle.

(2) Problem Definition.   Find  the total heat  transfer rate by convection from the surface of a 
plate with a  variable surface area and heat transfer coefficient. 

(3) Solution Plan.  Newton's law of cooling gives the rate of heat transfer by convection. 
However, in this problem  surface temperature is not uniform.  This means that the rate of heat 
transfer varies along the surface.  Thus,  Newton’s law should be applied to an infinitesimal area 
dAs and integrated over the entire surface to obtain the total heat transfer. 

(4)  Plan Execution. 

(i) Assumptions.  (1) Steady state, (2) negligible radiation, (3) uniform heat transfer 
coefficient and (4) uniform ambient fluid temperature. 

(ii) Analysis.  Newton's law of cooling states that 

qs = h As (Ts  - T ) (a) 

where

As = surface area, m2

h = heat transfer coefficient, W/m2-oC
qs = rate of surface heat transfer by convection, W 

Ts = surface temperature, oC

T = ambient temperature, oC

Applying (a) to an infinitesimal  area  dAs

d qs   = h (Ts  - T ) dAs (b) 

The next step is to express )(xTs in terms of distance x along the triangle. )(xTs  is specified as 

sT  = 
2/1x

A
                                                                 (c) 

L

x0 W

x0

L

W
sdq

dx



PROBLEM 1.1 (continued)

The infinitesimal area dAs is given by

dAs = W dx  (d) 
where

x = axial distance, m 
W = width, m 

Substituting (c) and into (b) 

d qs   = h(
2/1x

A
  - T ) Wdx (e) 

Integration of (f) gives qs

 qs = sdq   = 

L

dxTAxhW
0

2/1 )( (f)

Evaluating the integral in (f) 

LTALhWqs
2/12

Rewrite the above 

TALhWLqs
2/12                                                     (g) 

Note that at x = L surface temperature )(LTs is given by (c) as 

2/1)( ALLTs                                                             (h) 

(h) into (g) 

TLThWLq ss )(2                                                        (i) 

(iii) Checking. Dimensional check: According to (c) units of C are 2/1o C/m . Therefore units 

sq in (g) are W. 

Limiting checks:  If   h = 0 then qs = 0.  Similarly,  if  W = 0 or L = 0 then qs = 0.  Equation (i) 

satisfies these limiting cases. 

(5)  Comments.  Integration is necessary because surface temperature is variable.. The same 
procedure can be followed if the ambient temperature or heat transfer coefficient is non-uniform.     





PROBLEM 1.2 

A right angle triangle is at a uniform surface temperature Ts. Heat is removed by convection to 

an ambient fluid  at T . The heat transfer coefficient h varies along the surface according to  

                                                                      h = 
C

x1 2/

where C  is constant and x is distance along the base measured from the apex.  Determine the 

total heat transfer rate from the triangle.

 (1) Observations.   (i) Heat  is removed from the surface by convection.  Therefore,  Newton's  
law of cooling may be helpful.  (ii) Ambient temperature and surface temperature are uniform.  
(iii) Surface area and heat transfer coefficient vary along the triangle.   

(2) Problem Definition.   Find  the total heat  transfer rate by convection from the surface of a 
plate with a  variable surface area and heat transfer coefficient. 

(3) Solution Plan.  Newton's law of cooling gives the rate of 
heat transfer by convection. However, in this problem  surface 
area and heat transfer coefficient are not uniform.  This means 
that the rate of heat transfer varies along the surface.  Thus,  
Newton’s law should be applied to an infinitesimal area dAs

and integrated over the entire surface to obtain the total heat 
transfer.

(4)  Plan Execution. 

(i) Assumptions.  (1) Steady state, (2) negligible radiation and (3) uniform ambient fluid 
temperature. 

(ii) Analysis.  Newton's law of cooling states that 

qs = h As (Ts  - T ) (a) 

where

As = surface area, m2

h = heat transfer coefficient, W/m2-oC
qs = rate of surface heat transfer by convection, W 

Ts = surface temperature, oC

T = ambient temperature, oC

Applying (a) to an infinitesimal  area  dAs

d qs   = h (Ts  - T ) dAs (b) 

The next step is to express h and dAs in terms of distance x along the triangle. The heat transfer 
coefficient h is given by 

h = 
C

x1 2/
 (c) 

The infinitesimal area dAs is given by
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PROBLEM 1.2 (continued)

dAs = y(x) dx (d) 
where

x = distance along base of triangle, m 
y(x) = height of the element dAs, m 

Similarity of triangles give 

y(x) = 
W

L
x  (e) 

where

L = base of triangle, m 
W = height of triangle, m 

Substituting (c), (d) and (e) into (b) 

d qs   = 
C

x1 2/
(Ts  - T )

W

L
x dx (f) 

Integration of (f) gives qs.  Keeping in mind that C, L, W, Ts  and T  are constants, (f) gives 

qs = sdq   = )( TT
L

WC
s

L

x

x

0
2/1

dx (g)

Evaluating the integral in (g) 

qs =
2

3
C W L

1/2 (Ts - T ) (h) 

(iii) Checking. Dimensional check: According to (c) units of C are W/m3/2-oC. Therefore 
units of qs  in (h) are 

qs = C(W/m3/2-oC) W(m) L1/2(m1/2) (Ts - T )(oC) = W 

Limiting checks:  If   h = 0 (that is C = 0) then qs = 0.  Similarly,  if  W = 0 or L = 0 or Ts = T

then qs = 0.  Equation (h) satisfies these limiting cases. 

(5)  Comments.  Integration was necessary because both area and heat transfer coefficient vary 
with distance along the triangle. The same procedure can be followed if the ambient temperature 
or surface temperature is non-uniform.





PROBLEM 1.3 

A high intensity light bulb with surface heat flux sAq )/( is cooled by a fluid at T . Sketch the 

fluid temperature profiles for three values of the heat transfer coefficients: h1, h2, and h3, where 

h1 < h2 < h3.

(1) Observations.   (i) Heat flux leaving the surface is specified (fixed). (ii) Heat loss from the 
surface is by convection and radiation. (iii) Convection is described by Newton's law of cooling.  
(iv). Changing the heat transfer coefficient affects temperature distribution. (v).  Surface 
temperature decreases as the heat transfer coefficient is increased. (vi) Surface temperature 
gradient is described by Fourier’s law.(vii) Ambient temperature is constant.  

(2) Problem Definition. Determine effect of heat transfer coefficient on surface temperature and 
surface gradient.. 

(3) Solution Plan.  (i) Apply Newton's law of cooling to examine surface temperature. (ii) Apply 
Fourier’s law to determine temperature gradient at the surface.  

(4)  Plan Execution. 

(i) Assumptions.  (1) Steady state, (2) no radiation ,(3) uniform ambient fluid temperature 
and (4) constant properties. 

       (ii) Analysis.  Newton’s law of cooling 

)(/ TThAq ss                                                         (a) 

Solve for sT

h

Aq
TT s

s

)/(
                                                          (b) 

This result shows that for constant sAq )/(  surface temperature decreases as h is increased. 

Apply Fourier’s law 

0
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s
y

T
kAq             (c) 

where y is the distance normal to the 
surface. Rewrite (c) 

k

Aq

y

T w

y

/

0

             (d) 

This shows that  temperature gradient at 
the surface remains constant independent 
of h. Based on (b) and (d) the temperature 
profiles corresponding to three values of 
h are shown in the sketch. 

(iii) Checking. Dimensional check: (1) Each term in (b) has units of temperature         
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PROBLEM 1.3 (continued) 

(2) Each term in (d) has units of   C/mo

C/m
C)W/m-(

)C/m(/
C/m)( o

o

2o
o

0 k

Aq

y

T w

y

Limiting check: (i) for h = 0 (no heat leaves the surface), surface temperature is infinite. Set h = 0 

in (b) gives .sT

(5) Comments. Temperature gradient at the surface is the same for all values of h as long as the 
thermal conductivity of the fluid is constant and radiation is neglected. 



PROBLEM 1.4 

Explain why fanning gives a cool sensation.

(1) Observations.   (i) Metabolic heat leaves 
body at the skin by convection and radiation. 
(ii) Convection is described by Newton's law 
of cooling.  (iii). Fanning increases the heat 
transfer coefficient and affects temperature 
distribution, including surface temperature. 
(iv). Surface temperature decreases as the 
heat transfer coefficient is increased. (v) 
Surface temperature is described by Newton’s 
law of cooling. (vi) Ambient temperature is 
constant.

(2) Problem Definition. Determine effect of heat transfer coefficient on surface temperature. 

(3) Solution Plan. Apply Newton's law of cooling to examine surface temperature.  

(4)  Plan Execution. 

(i) Assumptions.  (1) Steady state, (2) no radiation ,(3) uniform ambient fluid temperature, 
(4) constant surface heat flux and (5) constant properties. 

       (ii) Analysis.  Newton’s law of cooling 

)( TThq ss                                                             (a) 

where

h = heat transfer coefficient, CW/m o2

sq surface heat flux, 2W/m  

sT = surface temperature, Co

T =ambient temperature, Co

Solve (a) for sT

h

q
TT s

s                                                             (b) 

This result shows that for constant sq , surface temperature decreases as h is increased. Since 

fanning increases h it follows that it lowers surface temperature and gives a cooling sensation.

       (iii) Checking. Dimensional check: Each term in (b) has units of temperature         
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PROBLEM 1.4 (continued)

Limiting check: for h = 0 (no heat leaves the surface), surface temperature is infinite. Set h = 0 in 

(b) gives .sT

(5) Comments. (i) The analysis is based on the assumption that surface heat flux remains 
constant. (ii) Although surface temperature decreases with fanning, temperature gradient at the 
surface remains constant. This follows from the application of Fourier’s law at the surface 
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PROBLEM 1.5 

A block of ice is submerged in water at the melting temperature. Explain why stirring the water 

accelerates the melting rate. 

(1) Observations.   (i) Melting rate of ice depends on 
the rate of heat added at the surface. (ii) Heat is added 
to the ice from the water by convection. (iii) Newton's 
law of cooling is applicable.  (iv). Stirring increases 
surface temperature gradient and the heat transfer 
coefficient.  An increase in gradient or h increases the 
rate of heat transfer. (v) Surface temperature remains 
constant equal to the melting temperature of ice. (vi) 
water temperature is constant.  

(2) Problem Definition. Determine effect of stirring 
on surface heat flux. 

(3) Solution Plan. Apply Newton's law of cooling to examine surface heat flux.  

(4)  Plan Execution. 

(i) Assumptions.  (1) no radiation ,(2) uniform water temperature, (3) constant melting 
(surface) temperature. 

       (ii) Analysis.  Newton’s law of cooling 

)( TThq ss                                                             (a) 

where

h = heat transfer coefficient, CW/m o2

sq surface heat flux, 2W/m  

sT = surface temperature, Co

T =ambient water temperature, Co

Stirring increases h . Thus, according to (a) surface heat flux increases with stirring. This will 
accelerate melting.

 (iii) Checking. Dimensional check: Each term in (a) has units of heat flux.         

Limiting check: For sTT (water and ice are at the same temperature), no heat will be added to 

the ice. Set sTT  in (a) gives .0sq

(5) Comments. An increase in h is a consequence of an increase in surface temperature gradient. 
Application of Fourier’s law at the surface gives 
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PROBLEM 1.5 (continued)

Combining (a) and (b) 

TT

y

T
k

h
s

s                                                                 (c) 

According to (c), for constant sT and T , increasing surface temperature gradient increases h.



PROBLEM 1.6 

Consider steady state, incompressible, axisymmetric parallel flow in a tube of radius or . The 

axial velocity distribution for this flow is given by 

)(
2

2

1
or

r
uu

where u  is the mean or average axial velocity. Determine the three components of the total 

acceleration for this flow. 

(1) Observations. (i) This problem is described by cylindrical coordinates. (ii) For parallel 

streamlines 0vv r . (iii) Axial velocity is independent of axial and angular distance. 

(2) Problem Definition. Determine the total acceleration in the r,  and z directions.

(3) Solution Plan. Apply total derivative in cylindrical coordinates.

(4)  Plan Execution. 

(ii) Assumptions.  (1) Constant radius tube, (2) constant density and (3) streamlines are 
parallel to surface. 

       (ii) Analysis.  Total acceleration in cylindrical coordinates is given by  

tzrrr
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                     (1.23a) 
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For streamlines parallel to surface 

0vv r                                                                 (a) 

The axial velocity zu v  is given by
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2

2

1
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z
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r
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From (b) it follows that 

0
tz

zz vv
                                                             (c) 

Substituting into (1.23a), (1.23b) and (1.23c) 

Radial acceleration: 0
Dt

v

dt

v rr Dd

Angular acceleration;
Dt

v

dt

v Dd
0



PROBLEM 1.6 (continued)

Axial acceleration: 0
Dt

v

dt

v zz Dd

(5) Comments. All three acceleration components vanish for this flow. 



PROBLEM 1.7 

Consider transient flow in the neighborhood of a vortex line where the 

velocity is in the tangential direction given by 

t

r

r
trV o

4
exp1

2
),(

2

Here r is the radial coordinate, t is time, o  is circulation             

(constant)  is kinematic viscosity. Determine the three components 

of total acceleration. 

(1) Observations. (i) This problem is described by cylindrical coordinates. (ii) streamlines are 

concentric circles. Thus the velocity component in the radial direction vanishes ( 0rv ). (iii) 

For one-dimensional flow there is no motion in the z-direction ( 0zv ). (iv) The -velocity

component, v , depends on distance r and time t.

(2) Problem Definition. Determine the total acceleration in the r,  and z directions.

(3) Solution Plan. Apply total derivative in cylindrical  coordinates.

(4)  Plan Execution. 

       (ii) Assumptions.  (1) streamlines are concentric circles (2) no motion in the z-direction.

       (ii) Analysis.  Total acceleration in cylindrical coordinates is given by  

The three components of the total acceleration  in the cylindrical coordinates zr ,,  are
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                  (1.23a) 

tzrrr

Dd
z

r
r

vv
v

vvvvv
v

Dt

v

dt

v
               (1.23b) 

tzrr

Dd zz
z

zz
r

zz vv
v

vvv
v

Dt

v

dt

v
                       (1.23c) 

For the flow under consideration the three velocity component, ,rv v  and zv  are 

0rv                                                                    (a) 
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                                              (b) 

0zv                                                                   (c) 

Radial acceleration: (a) and (c) into (1.23a) 
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PROBLEM 1.7 (continued)

r

D r
2v
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v
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(b) into (d) 
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Tangential acceleration: (a) and (c) into (1.23b) 
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(b) into (f) 
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Axial acceleration: (a) and into (1.23c)  

0
Dt

v zD
                                                              (h) 

      (iii) Checking. Dimensional check: Units of acceleration in (e) and (g) are .m/s2 Note that  

according to (b), units of o  are /sm2  and the exponent of the exponential is dimensionless. 

Thus units of (e) are 
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Limiting check: (1) For 0o , all acceleration components vanish. Setting 0o  in (e) and 

(g) gives 0
Dt

v

Dt

v DD r

(2) According to (b) at t , the tangential velocity vanishes ( v = 0). Thus all acceleration 

components should vanish.  Setting t  in (e) and (g) gives 0
Dt

v

Dt

v DD r .

(5) Comments. The three velocity components must be known to determine the three 
acceleration components. 



PROBLEM 1.8 

An infinitely large plate is suddenly moved parallel to its surface with a velocity oU . The 

resulting transient velocity distribution of the surrounding fluid is given by

0

2 )exp()/2(1 dUu o

where the variable  is defined as

t

y
tx

2
),(

Here t is time, y is the vertical coordinate and  is kinematic viscosity.  Note that streamlines 

for this flow are parallel to the plate. Determine the three components of total acceleration. 

(1) Observations. (i) This problem is described by Cartesian coordinates. (ii) For parallel 
streamlines the y-velocity component 0v . (iii) For one-dimensional flow there is no motion in 

the z-direction (w = 0). The x-velocity component depends on distance y and time t.

(2) Problem Definition. Determine the total acceleration in the x,  y and z directions.

(3) Solution Plan. Apply total derivative in Cartesian coordinates.

(4)  Plan Execution. 

       (ii) Assumptions.  (1) streamlines are parallel to surface and (2) no motion in the z-
direction.

       (ii) Analysis.  Total acceleration in Cartesian coordinates is given by
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where f represents any of the three velocity components u, v or w. The x-velocity component u is 
given by

0

2 )exp()/2(1 dUu o (a)

where

t

y
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2
),( (b)

Note that u depends on y and t only. For one-dimensional parallel flow 

0wv                                                              (c) 

Total acceleration in the x-direction, xa . Set f = u in (1.21)
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PROBLEM 1.8 (continued)

Since u depends on y and t only, it follows that 

0
x

u
                                                              (e) 

Substitute (c) and (e) into (d)  
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u
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This derivative is obtained using the chain rule
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u
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Using (a) 
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Using (b) 
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2/3                                         (i) 

Substitute (h) and (i) into (g) 
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Total acceleration in the y-direction, ya . Set f = v in (1.21)
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d
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vvv
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Apply (c) to (h)  

0ya                                                               (i) 

Total acceleration in the z-direction, za . Set f = w in (1.21)
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Apply (c) to (h)  

0za                                                               (k) 

       (iii) Checking. Dimensional check: Units of acceleration in (g) are /s.m2 Note that  is 

dimensionless. Thus units of (g) are 
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Limiting check: (1) For 0oU , the acceleration .0xa  Setting 0oU  in (g) gives .0xa

(2) According to (b) at t , .0),(y  Evaluation (a) at 0),(y  gives



PROBLEM 1.8 (continued)

oUyu ),(                                                               (l) 

Since u is constant every where it follows that the xa  must be zero. Setting 0 and t in

(g) gives .0xa

(5) Comments. The three velocity components must be known to determine the three 
acceleration components. 



PROBLEM 1.9 

Consider two parallel plates with the lower plate stationary and the upper plate moving with a 

velocity .oU  The lower plate is maintained at temperature 1T  and the upper plate at .oT  The 

axial velocity of the fluid for steady state and parallel streamlines is given by 
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where H is the distance between the two plates.  

Temperature distribution is given by 
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where k is thermal conductivity and  is viscosity. Determine the total temperature derivative. 

(1) Observations. (i) This problem is described by Cartesian coordinates. (ii) For parallel 
streamlines the y-velocity component 0v . (iii) For one-dimensional flow there is no motion in 

the z-direction (w = 0). The x-velocity component depends on distance y only.

(2) Problem Definition. Determine the total temperature derivative.  

(3) Solution Plan. Apply total derivative in Cartesian coordinates.  

(4)  Plan Execution. 

       (ii) Assumptions.  (1) streamlines are parallel to surface, (2) no motion in the z-direction 
and (3) temperature distribution s one dimensional, ).(yTT

       (ii) Analysis.  Total acceleration in Cartesian coordinates is given by
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where f represents temperature. Let f = T in (1.21)  
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v = w = 0                                                                   (c) 

Temperature distribution is given by 
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Using  (d) 
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